The I/O interface to the die primarily interconnects electrical power, ground and signals. It must provide for low impedance for the power distribution system, so as to keep switching noise within specification, and controlled impedance for the signal leads to allow adequate signal integrity. In addition it must accommodate all the I/O and power and ground leads required, and at the same time, minimize the cost for high volume assembly.

The secondary role of chip bonding is to be mechanically robust, not interfere with thermal management and be the geometrical transformer from the die features to the next level of packaging features. There are many options for the next level of interconnect, including:

- leadframe in a single chip package
- ceramic substrate in a single chip package
- laminate substrate in a single chip package
- ceramic substrate in a multichip module
- laminate substrate in a multichip module
- glass substrate, such as an LCD (liquid crystal display)
- laminate substrate, such as a circuit board
- ceramic substrate, such as a circuit board

For all of these first level interfaces, the chip bonding options are the same. Illustrated in Figure 9-1, they are:

- wirebond
- TAB (tape automated bonding)
- flip chip; either with a solder interface, a polymer adhesive or a welded joint

Because of the parallel efforts in widely separated applications involving similar, but slightly different variations of chip attach techniques, seemingly confusing names have historically evolved to describe some of the attach technologies.

COG (chip on glass) refers to assembly of bare die onto LCD panels. This can typically be flip chip, ACF (anisotropic conductive film) attach, or less commonly, wirebonding to gold or aluminum pads metallized on the glass. TAB attach to glass is sometimes referred to as COG as well.
COB (chip on board) refers to assembly of bare die onto a laminate substrate, such as FR-4, with wirebonding. This is sometimes referred to as MCM-L.

DCA (direct chip attach) refers to flip chip attach of a bare die to a laminate substrate. It is distinguished from COB by the use of flip chip bonding rather than wirebonding. DCA is also a form of MCM-L. Flip chip, when used with ceramic MCMs, is usually referred to as FC-MCM.

TCP (tape carrier package) refers to a chip already attached to a TAB leadframe. The use of the term TCP has become a popular replacement for the term TAB because TAB has recently suffered in image from not having lived up to its promises in the U.S.
Electrical Issues

The most important electrical properties of the first level bond to the chip is the lead inductance and resistance. The leading order term that influences the lead inductance is the length of the lead. The shorter the interconnect, the lower the inductance. As pointed out in a previous chapter, lower inductance in the power and ground path will decrease ground bounce and switching noise.

To first order, the lead inductance of a wirebond is about 1nH/mm, or 25nH/inch. A wirebond 50mils long will have a lead inductance of 1.3nH. A solder ball used in C4, 5mils tall, will have an inductance on the order of 0.13nH. At this scale, other factors than the length of the interconnect dominate the inductance, but it will still be significantly below that of a wirebond. A TAB lead, 200mils long, might have a lead inductance of 5nH.

The second important term is resistance. This will affect the DC voltage drop in power and ground paths. A wirebond, 1mil in diameter has a resistance of about 1 Ohm/inch. For a wire 50mils long, the resistance is about 50mOhms. With the typically 0.25A limit for a single wirebond, the DC voltage drop might be 12mV, below the typical noise budget for even a 3V system. Shorter lengths and wider cross sections contribute to lower resistance.

The typical electrical properties of the various interconnects are summarized in Figure 9-2.

<table>
<thead>
<tr>
<th>Resistance Per Length</th>
<th>Inductance Per Length</th>
<th>Typical Lengths</th>
<th>Typical Resistances</th>
<th>Typical Inductances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirebond</td>
<td>1 Ohm/inch</td>
<td>25nH/inch</td>
<td>50-100mils</td>
<td>50-100mOhms</td>
</tr>
<tr>
<td>TAB</td>
<td>0.25 Ohm/inch</td>
<td>21nH/inch</td>
<td>100-300mils</td>
<td>25-75mOhms</td>
</tr>
<tr>
<td>Flip Chip</td>
<td>0.08 Ohm/inch</td>
<td>18nH/inch</td>
<td>3-6mils</td>
<td><1mOhm</td>
</tr>
</tbody>
</table>

Source: ICE, “Roadmaps of Packaging Technology”

Figure 9-2. Summary of Electrical Properties of Chip Bonding Technologies

WIREBONDING

Over 93 percent of all chips are electrically connected by wirebonding. In 1996, this corresponded to over 1 trillion wirebonds. Assuming 100mils as the average bond, this is 100 billion inches, or 2.5 million kilometers of wire, enough wire to make four round trips from the earth to the moon. Yet, with the universal use of wirebonding, and its high volume, it is also the most common source of failure for an IC. 26% of all IC failures are related to the wirebond. Figure 9-3 shows the failure mechanism breakdown for packaged die.
The reason wirebonding is so popular is:

- it works
- virtually all die are compatible with it
- it is robust
- it is very mature- all of the known problems have known solutions
- the yield can be very high, typically 100ppm defects per wirebond
- alternatives are riskier
- there is a well established infrastructure to support it
- the capital expense for a small shop to get started in wirebonding is less than $20k
- it is flexible- no tooling charges for different chips and packages
- it can accommodate die shrinks without requiring a package change

Any alternative processes that may catch on must have a very compelling motivation.

Gold Versus Aluminum Wirebonding

Two types of wires are typically used, gold and aluminum. Each has a different assembly process, equipment and operating conditions.

The process for aluminum wirebonding is illustrated in Figure 9-4. The fine wire is threaded through a micro machined capillary tube that precision aligns the end of the wire over the die pad and forms the ultrasonic weld. A close up of the wedge tool is shown in Figure 9-5. A magnified view of the bond on the chip is shown in Figure 9-6.
After the first bond is made, and the aluminum wire is welded to the aluminum pad, the tool moves the wire through space to form a loop, ending on the next level pad, usually on the bonding shelf of a package. The tool next comes down and ultrasonically welds the aluminum wire to the second pad. The heel of the tool severely weakens the tail of the weld on the pad. The tool then clamps hold of the wire and pulls up, breaking the wire at the heel. The tool is then ready to repeat the process on the next chip pad.

The metallization on the chip is typically aluminum and the metallization on the second pad is typically gold or silver plated copper. The bonding is performed at room temperature and the weld is accomplished with pressure and ultrasonic energy, hence the name, ultrasonic bonding.

The process for gold wire bonding is illustrated in Figure 9-7. The end of the gold wire is melted in a micro spark at the tip of a capillary tube. A close up of the capillary tube for gold ball bonding is shown in Figure 9-8. The ball is aligned over the pad on the die and the combination of heat, pressure and ultrasonic energy welds the gold ball to the aluminum die pad.

Figure 9-4. Ultrasonic Bonding Sequence
Chip Bonding at the First Level

Figure 9-5. Close Up of Aluminum Wire Bonding Tool

Figure 9-6. Aluminum Wedge Bond on an IC
When just heat and pressure is used, the process is termed thermocompression bonding. In order to form a reliable gold-aluminum bond, the joint temperature must be in the 300-400°C range. This is suitable for ceramic packages, using a Si-Au eutectic die attach, but is too hot for plastic packages.

When lower temperatures are required, the addition of ultrasonic energy reduces the temperature required for reliable joint formation to 150-200°C. This process is often termed thermosonic bonding. A magnified view of a gold sphere bonded to a pad is shown in Figures 9-9 and 9-10.

After the ball is bonded to the chip pad, the capillary tube is drawn up, then over to the location of the second bond site, usually the bonding shelf of the package. A typical wirebond loop is shown in Figure 9-11.

Figure 9-7. Thermocompression/Thermosonic Bonding Sequence
In addition to the temperature difference between gold and aluminum wirebonding, the other chief difference is the speed of the bonding. Gold thermocompression bonding is 3-5 times faster than aluminum wedge bonding. This makes it often times the lower cost alternative. The speed advantage is due to the nature of the motion of the tool and the substrate.

When the ball bond is formed on the die, the tool can move off in any direction to make the second bond. The package or substrate can be stationary, and the tool does all back and forth motion. This means the bonding process is limited by how fast the tool can move from pad to pad. High-speed bonders can process 10 bonds per second.
In aluminum wedge bonding, the tool is directional. The first and second wedge bond must be done in the direction of the wire. In most packages, the wirebonds fan out like spokes of a tire. An example is shown in Figure 9-12. After each bond is made the tool head must be rotated slightly. This slows down the bonding process to only about 3 bonds per second. However, when the bonds are parallel, and the tool does not have to rotate, ultrasonic aluminum wedge bonding can be fast. An example of parallel aluminum wirebonds is shown in Figure 9-13.
Figure 9-12. Typical Wirebond Pattern with Fan Out From the Chip Pitch to the Package Bonding Shelf Pitch

Figure 9-13. 6mil Pitch Parallel Wirebonds to a Thin-Film Substrate
On Chip Pad Pitch

All roads lead to increased pad count for die. This comes from the combination of increased functionality and gate count, and the need for more power and ground pins to minimize ground bounce. Yet, the die size for the same gate count is decreasing as the feature size gets smaller. These factors contribute to the need to decrease the pad pitch required around the periphery of a die for bonding pads.

For example, the Pentium chip has maintained the same functionality, yet has gone through a number of die shrinks as the feature size has been reduced. The die shrink is illustrated in Figure 9-14. Though the die got smaller, the number of I/O off the die stayed the same. This means the bond pad pitch has to shrink.

The IC manufacturing process can make pads on 1 micron centers. However, the useful pitch of a bonding pad is set by the wirebonder technology. This is the major driving force on bonding technology—allowing a tighter pad pitch on the chip.

Figure 9-15 illustrates the roadmap for finer pitch wirebonding in production, in the past and in the future. In 1996, the tightest pitch in prototype production for ball or wedge bonding is roughly 70 microns. An example of 70 micron gold ball bonding is shown in Figure 9-16.
Figure 9-15. Fine Pitch Roadmap

Figure 9-16. Bond Pitches of 70µm are Expected to Reach the Production Stage in Mid-1998
Figure 9-17 shows the maximum number of pads that can fit on a die with a fixed pad pitch. For the largest die, at 18mm on a side, the pad limited I/O count is 720 I/O for 100 micron centers. A growing concern for large ASICs is being pad limited. This means the die size must be artificially increased to allow enough perimeter for all the bonding pads. The last thing a chip fabricator wants to do is ship bare silicon on a chip in order to have enough periphery for all the bonding pads. Getting around the “tyranny of the peripheral bonding pads” is a major driving force for area array flip chip.

![Graph showing maximum I/O possible for pad limited peripheral die](image)

Figure 9-17. Maximum I/O Possible for Pad Limited Peripheral Die

Pitch on the First Level

The wirebond is the first step in the mechanical transformation from the die pitch to the package pitch. It is only the most leading edge packages that can handle a pad pitch of the same dimension as the chip. In such a case, there is no fanout of the wirebonds, and they are all short and parallel. An example of a ceramic package with a thin film metallization layer on top, with a 6mil pitch, matching the pitch on the chip, is shown in Figure 9-18.
When a multilayer substrate is used as the package, multiple bonding shelves can be used to shorten the maximum wirebond length. Figure 9-19 shows a three shelf cofired ceramic package used for a high speed ASIC, with parallel wirebonds. A more economical approach is to use two bonding shelves in the package and a fan out of the wirebonds. An example is shown in Figure 9-20.

![Figure 9-18. Ceramic PGA with Thin-Film Layer (6mil Cavity Pitch)](image1)

When there is no cavity, and the package is to be mounted “cavity up”, there can still be multiple rows of pads on the surface of the package. This complicates the loop heights required, but keeps the wirebonds short. An example is shown in Figure 9-21.

![Figure 9-19. Cavity Down, 476-Lead Ceramic PGA with Three Bonding Shelves to Keep Wirebonds Short](image2)
For leadframe based packages, where the lead count is typically less than 200, there is a growing problem due to the shrinking die size. The inner lead pitch of the leadframe is limited to a mechanical stamping process. The tightest pitch leadframe inner lead pitch is about 8mils, based on a leadframe thickness of 4mils, but is more typically 10mils. The longest wirebonds length, found in the corners, is illustrated in Figure 9-22.

Figure 9-23 shows graphically that when the die bond pitch is 4mils and the lead pitch is 10mils, the longest wirebond is over 200mils, way beyond the safe limit. As a rule of thumb, the longest wirebond length should be kept to less than 100x the wire diameter. Otherwise, there is the danger of wirebonds sagging or shorting during the molding process.

As die size shrinks, this problem will get worse. One solution is to use an interposer in the cavity, fabricated with a lithographic process that has a fine pitch to match the chip, and fans out to a coarser pitch to match the leadframe.
Chip Bonding at the First Level

\[
L_{\text{longest}} = \sqrt{2} \left(\frac{1}{8} N_{\text{pads}} \cdot P_{\text{outer}} - \frac{1}{8} N_{\text{pads}} \cdot P_{\text{inner}} \right)
\]

\[
= \frac{\sqrt{2}}{8} N_{\text{pads}} \left(P_{\text{outer}} - P_{\text{inner}} \right)
\]

\[
= 0.18 N_{\text{pads}} \left(P_{\text{outer}} - P_{\text{inner}} \right)
\]

Source: ICE, “Roadmaps of Packaging Technology”

Figure 9-22. Longest Wirebond

Figure 9-23. Largest Wirebond for Different Inner Lead Pitches and a 4mil Pad Pitch on the Chip
CHIP PAD BONDING: FLIP CHIP

Using the surface of the die for I/O by definition requires the die to be mounted face to face with the interconnect substrate. This is usually viewed as flipped from the conventional pads-up orientation, and hence the name, flip chip. The use of the entire surface of the die for interconnect opens many new possibilities for both single- and multi-chip applications.

Driving Forces for Flip Chip

There are five major advantages with an area array format for chip pads:

- Enabling higher I/O possible off a fixed sized die
- Lower cost die by allowing a smaller sized die in a pad limited design
- Lower switching noise due to more power and ground pads and lower lead inductance
- Smaller footprint possible on the substrate enabling new product form factors
- Lower assembly costs by batch bonding and avoiding the extra cost of a package

It is usually one or more of these features which has motivated the tremendous interest in flip chip approaches in the last 5 years and contributed to the proliferation of possible implementation paths.

The fundamental motivation for flip chip attach is to allow an area array distribution of I/O off a chip. Even using conservative design rules of 10mil centers to the area array interconnections, the I/O count is very large compared to peripheral attach methods. For example, on a moderate sized die of 15mm on a side, over 5,000 connections would be available. This means either a fixed die size can get more I/O, or a fixed I/O can be fit on a smaller die.

Figure 9-24 illustrates the I/O count possible using a 10mil pitch area array and a 4mil and 3mil pitch peripheral I/O. For pad limited die larger than 100 I/O, an area array form factor will yield a smaller die than 4mil pitch peripheral pads.

Another motivation for flip chip assembly is as an implementation of chip scale packaging (CSP). This means the package footprint on the substrate takes up no more than an additional 20% real estate over the bare chip physical size. This is a huge system level density advantage. In some cases, it can save in product size and assembly costs.

Another motivation for flip chip is in the lower possible bonding parasitics and better electrical performance. The typically short length of the flip chip bonds translates directly into less power and ground inductance. Other advantages include higher potential pad count for power and ground pads and flexible positioning over the surface of the die will also decrease the impedance of the power and ground distribution network.
Flip Chip for Single Chip Packages

Though flip chip attach is a popular method for implementing MCMs, it is also being used in single chip packages, primarily when the die is pad limited. A smaller die is possible using area array off the die. This translates to a cost reduction in the silicon over wirebonding. In addition, with shorter bond lengths, there is less switching noise which can contribute to a performance gain. Both of these features make flip chip attractive for very high pin count die, typically greater than 500 pins, in single chip packages.

In 1996, flip chip (FC) single chip applications almost exclusively used ceramic substrates, either CQFP or CBGA. An example is shown in Figure 9-25. Multilayer, cofired ceramic is required primarily because of the tighter via pitch needed to route the escapes from the closely spaced solder balls on the die, and because of the established reliability database for use in flip chip applications. An underfill is used to provide enhanced reliability from thermal cycling and environmental protection for the flip chip die.

As microvia technology moves into production for laminate technology, PCBs will increasingly be used as the substrate of choice. An example of a flip chip PCB single chip package is shown in Figure 9-26.
Figure 9-25. Single Chip Ceramic Package with Flip Chip Assembly

Figure 9-26. Flip Chip on Single Chip Laminate Package
The same issues related to designing and implementing flip chip assembly applies for both single chip and multiple chip packages. Applications for flip chip in multi-chip packages are described in a later chapter.

Assembly Process: Solder Attach

There are two fundamental methods that are used in production to attach flipped chip devices to the next level: solder and conductive adhesives.

Flip chip attach with solder has been in use since the ‘60’s by IBM for computers and Delco Electronics for automotive applications. The early process involved the evaporation through a shadow mask of a 97% Pb/3% Sn high temperature solder to the conditioned die. The solder was reflowed on the chip to form a solder ball. The bumped chip was then flip chip attached to a ceramic substrate. This assembly was reflowed at the 350°C melt point and the solder ball collapsed to form a squashed tomato shape. This process of controlled collapse chip connection was termed C4. In 1996, Delco alone performed 300,000 flip chip assemblies per day, with a variant of C4.

Figure 9-27 shows the cross section of a flip chip die attached to the substrate. Though there is a wide variation in the specifics of the processes, the basic steps to prepare a chip and attach it to a surface with solder are the same. The basic features are:

- Aluminum pad metallization
- under bump metallization (UBM)
- solder bump
- pad on the substrate
- underfill polymer

![900 Ball Flip Chip ASIC](image1)
![Close Up of the 5mil Diameter Solder Balls on the ASIC](image2)
![Cross Section of Solder Ball Showing the UBM on the ASIC](image3)

Figure 9-27. Solder Ball Flip Chip ASIC
The basic process steps, with their variants are listed in Figure 9-28.

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>create area array pads</td>
<td>• design the I/O for area array from the beginning</td>
</tr>
<tr>
<td></td>
<td>• redistribute the traditional peripheral pads to area array pads with one or two metal layers deposited on the wafer</td>
</tr>
<tr>
<td>metallization for solder: under bump</td>
<td>• adhesion layers: Cr, Ti</td>
</tr>
<tr>
<td>metallization (UBM)</td>
<td>• solder wetting layer: Ni, Cu</td>
</tr>
<tr>
<td></td>
<td>• solderable protective surface: Au, solder</td>
</tr>
<tr>
<td>build the solder ball</td>
<td>• evaporate, electroplate</td>
</tr>
<tr>
<td></td>
<td>• solder composition: Pb/Sn 97/3, 95/5, 63/7, 60/40</td>
</tr>
<tr>
<td></td>
<td>• reflow</td>
</tr>
<tr>
<td>prepare pad on substrate</td>
<td>• screen print solder paste and flux</td>
</tr>
<tr>
<td></td>
<td>• solder plate and apply flux</td>
</tr>
<tr>
<td>align and place flipped chip to substrate</td>
<td>• pick and place SMT equipment</td>
</tr>
<tr>
<td>reflow the solder and form the joint</td>
<td>• locally heated</td>
</tr>
<tr>
<td></td>
<td>• reflow oven</td>
</tr>
<tr>
<td>underfill polymer</td>
<td>• snap cured, low viscosity epoxy</td>
</tr>
</tbody>
</table>

In the original C4 process, the solder ball was a high melting point solder. Virtually all the connections were made to a ceramic substrate, and the solder ball was reflowed to the substrate at about 350°C to form the controlled collapse joint.

In applications for attach to polymer substrates, two approaches have been adopted. First is to use a eutectic solder ball on the chip, and reflow at about 200°C to attach the chip to the board. The second approach is to use the high lead solder ball on the chip, but eutectic solder paste on the board, and reflow the chip at 200°C. The solder on the board will melt and reflow, forming a joint to the high temperature solder ball. In this case, the high Pb solder ball is acting as a solderable standoff. This is the process Motorola uses for consumer product applications of direct chip attached flip chips on FR-4 substrates.

The final step in the flip chip assembly process is to underfill the chip with a stress relieving polymer. Due to thermal mismatches between the silicon chip and the substrate, there will be stresses applied to the solder balls. Typically, the balls farthest from the neutral point—the center—will experience the highest stresses. During thermal cycling, the periodic stress on the solder joints will eventually initiate and propagate cracks which result in joint failures.
The greater the thermal expansion mismatch, the fewer thermal cycles before failure. The relative number of cycles before onset of failure is described by the Coffin-Manson equation. This is shown graphically in Figure 9-29. The use of ceramic substrates with flipped chips results in a large number of cycles before failure. When FR-4 is used, the fatigue life is reduced by a factor of 100.

To gain back the long life reliability, the 3-5mil gap underneath the chip can be underfilled with a stress relieving polymer, usually low viscosity epoxy. The liquid epoxy is dispensed around two or three sides of the flipped chip and capillary forces are used to draw the liquid under the die. This is shown in Figure 9-30.

Figure 9-31 illustrates the cycles to failure of a flip chip on FR-4 with and without the underfill. Without the underfill, 50% of devices will show solder joint failures within 5 thermal cycles. With the underfill, the devices can withstand over 1000 thermal cycles. The polymer distributes the stress more evenly over the surface of the silicon chip, rather than concentrating it at the outermost solder joints.
The underfill polymer has an added function of providing environmental protection and enhanced thermal conductivity from the chip to the substrate. Just as a polymer encapsulant enabled the introduction of wirebonded COB applications, the underfill polymer enables the use of flip chip attach on laminate substrates, a major cost advantage.
Wafer Bumping Costs

The process of preparing the wafer with the necessary metallization and solder balls is called wafer bumping. The cost to bump a wafer is extremely sensitive to the process steps and lithography requirements. The proliferation of different processes to end up with a bumped wafer is driven by the need to get around patent protections and to find paths to decrease the wafer bumping costs.

The street price for wafer bumping is about $250/6 inch wafer, in low volume. A cost analysis by MCNC is shown in Figure 9-32. They predict that for low volume bumping, the cost should be about $100/wafer. They estimate that the cost should be as low as $10/wafer, in high volume production.

MCNC has spun off a company, Unitive, to commercialize their wafer bumping process, as a merchant contract bumping service provider. Recently, Delco Electronics, and Kulicke and Soffa formed a joint venture named Flip Chip Technologies, another merchant supplier of wafer bumping services. Delco has over 25 years of wafer bumping and flip chip experience, and K&S is the world’s largest supplier of wirebonding equipment. This new joint venture is setting up manufacturing capacity to bump 1.5 million devices per day.
Wafer bumping is a batch process. The costs are based on wafer size, not number of pads on the wafer. Flip chip attach can offer a cost reduction over wirebonding if a large enough number of pads are bumped at one time. The more pads on a wafer, the lower the per-pad cost. The number of pads on a wafer depends on the area of the wafer, the length of the side of a chip, and the pad pitch if they are on the periphery and the chip is pad limited in I/O. The number of pads on a wafer is given by:

\[
N_{\text{pads on wafer}} = \frac{A_{\text{wafer}}}{L_{\text{Chip}}^2} \cdot \frac{4L_{\text{chip}}}{P_{\text{chip}}} = \frac{4A_{\text{wafer}}}{L_{\text{chip}} P_{\text{chip}}}
\]

The number of pads increases as the chip size gets smaller, or the pad pitch gets smaller. For example, with a 10mm chip, and pad pitch of 100 microns, there are a total of 400 pads per die. On a 150mm round wafer, about 150 chips can be placed. If the yield is very high, there would be over 60,000 solder bumped pads. At $100 cost to bump the wafer, the cost per pad is $0.0015. This cost drops even lower, with a smaller die. This is to be compared with a wirebond cost of about $0.005, in high volume.

As the infrastructure grows for wafer bumping and substrate fabrication, flip chip offers the possibility of future assembly cost reductions, even for single chip packages.

Unconventional Approaches to Flip Chip Solder Attach

In addition to the conventional processes above, some novel variations have been proposed.

The most expensive wafer bumping step is the lithography process used to either redistribute the peripheral pads to area array or to pattern the UBM to define the solder bump pads. Two methods have been proposed to implement solderable standoffs on the chip without lithography.

The first method uses an electroless zincate process to activate the aluminum pad with zinc, which can then be electrolessly plated with nickel and then copper or gold. The process steps are shown in Figure 9-33. The entire process of transforming a flat aluminum pad into a gold plated bump is done entirely electroless, basically dipping the wafer in various solutions. Figure 9-34 is a cross section of an electrolessly grown bump. To attach the chip to a substrate, solder would have to be screen printed to the substrate.

The second method uses a modification of the standard gold ball bonding process. After all, in gold ball bonding, a gold wire is metallurgically attached to an aluminum pad, without using any lithographic steps or additional chemistry. In the standard process, a gold ball is formed on the end of the wire and is thermosonically attached to the aluminum pad. The wire is then drawn up and looped to a second pad location. If the wire is broken before it loops up very high, a gold ball and stud are left on the chip.
There are a number of variations on this theme, each with a different amount of wire left behind, from no stud to a 20mil stud.
At one extreme is the BIP process developed by Raychem Corp. in 1990. Termed the “BIP™” process, for “Bonded Interconnect Pins,” it used aspects of two well established processes, gold ball bonding and surface mounting of pinned packages with gold-tin solder.

In the first stage of the BIP™ process, a gold wire is ball bonded to a standard aluminum pad on a chip. The wire is cut off 20mils from the chip. The result is a chip with tiny pins attached. An example of a BIP’ed chip is shown in Figure 9-35.

A substrate is prepared with a 4mil thick layer of dielectric having holes machined in it with balls of 80/20 gold-tin solder deposited in them. An example is shown in Figure 9-36. The pinned chip is flip-chip mounted into the small wells, and reflow soldered in place at 315°C. The final assembly is drawn in cross section in Figure 9-37a and an example is shown in Figure 9-37b.

CMOS gate arrays with 6mil pitch peripheral pads have been BIP chip attached, using 1 and 2mil gold wire. The compliant leads will allow large thermal mismatches between the die and the substrate and large die sizes, but are short enough to have very low inductance.

At the other extreme is the process of breaking the wire off at the ball, leaving a very small stud. The wirebonding process is outlined in Figure 9-38. An example of a stud bump on a chip is shown in Figure 9-39. After bumping, the gold ball can be flattened, or coined, to result in an array of balls all with the same heights. An example of a coined chip is shown in Figure 9-40. A coined chip can be used with solder attach or conductive adhesive attach.
Figure 9-36. Solder Balls in 6mil Holes for BIP’ed Chip

Figure 9-37. The BIP’ed Chip Showing Basic Structure and on a Substrate
An intermediate version of this process is the BIT (Bonded Interconnection Technology) process from Fujitsu. A small stud is left protruding from the gold ball, which is used to provide a higher standoff, after either adhesive attach or solder attach to the substrate. A cross section is shown in Figure 9-41.
An extreme example of the use of narrow, fine pitch wires for flip chip attach is the WIT (wire interconnect technology) process from Fujitsu Computer Packaging Technology. By the use of electroless copper plated through high aspect ratio holes in photoresist, 40 micron tall, 10 micron diameter copper wires can be grown on pads. Wires on a 45 micron pitch have been demonstrated. An example is shown in Figure 9-42. On a chip 10mm on a side, this would allow a staggering 40,000 I/O! Of course, there are no substrates currently available that can interconnect all these I/O.

Assembly Process: Adhesive Attach

Another approach to implementing flip chip technology relies on the use conductive adhesives. They can be either isotropically conductive or anisotropically conductive materials.
Isotropically conductive adhesives are typically epoxy based, and filled with conductive particles, commonly silver, nickel or tin. As the loading concentration of the filler material increases, the bulk resistivity drops dramatically. Figure 9-43 shows the transition from 10^{14} Ohm-cm, the bulk resistivity of the epoxy base, to about 1 Ohm-cm, when the Nickel concentration is increased from 30% to 60%.

![Figure 9-42. Sea of WITs](image1.png)

![Figure 9-43. Resistivity Versus Nickel Volume Concentration in Polymer Matrix](image2.png)
These conductive filled polymers have historically been used extensively in die attach applications, and have recently been applied to chip bonding applications. Epoxy Technology has coined the term Polymer Flip Chip (PFC) to refer to bumping of die with isotropically conductive polymer, and the subsequent lack of solder bonding to the next level.

The aluminum pads on the IC die are not stable surfaces to contact the conductive epoxy. The native oxide present prevents a good ohmic contact. Contact resistances can be on the order of 100 Ohms and break through voltages, depending on the oxide thickness, can be 2-7 volts. The first step in using a conductive adhesive is to bump the die with an inert metal. An attractive process that is potentially low cost is the electroless zincate process, described above. This is a maskless process involving the electroless plating of first a thin zinc layer, followed by a nickel layer and finally capped with a gold layer.

In the Epoxy Technology process, after gold plating the wafer, screen printing is used to apply the various polymer layers. The first polymer layer to be applied is a 25 micron thick dielectric coat with vias over the pads. This is an optional layer to protect the IC's passivation layer. The second layer is the conductive polymer. It can be a thermoplastic material, a fully cured thermoset material, or a partially cured B stage thermoset material. Figure 9-44 is a magnified view of the polymer bumps applied in this way to a chip.

![Magnified Side View of Conductive Polymer Bumps on a Chip](image)

Source: Epoxy Technology/ICE, “Roadmaps of Packaging Technology” 22421

Figure 9-44. Magnified Side View of Conductive Polymer Bumps on a Chip

If a fully cured thermoset is used, the pads on the substrate must be coated with a conductive adhesive, and it is this film that actually forms the joint. If a thermoset or B stage polymer is bumped on the die, the pads on the substrate can be uncoated gold pads. The application of heat and pressure creates the joint with the bumped die.
After flip chip attach, the chip can be underfilled with a low stress polymer for mechanical and environmental protection.

An alternative approach, used by Fujitsu in their BIT process, for example, uses gold ball bonding as the method of bumping the wafer. The gold posts on each pad are coated with a thin layer of silver filled epoxy by touching the die surface to a screen printed film of the epoxy. The silver filled epoxy is picked up by only the protruding gold bumps. An example of the gold studs coated with the conductive epoxy prior to substrate attach is shown in Figure 9-45. This adhesive is used to make the mechanical and electrical contact between the chip and the gold pads of the substrate to which it is bonded.

The use of anisotropically conductive polymers has been popular in the LCD display industry for many years, but may not transfer to the general purpose digital world. The principle of an anisotropically conductive adhesive is illustrated in Figure 9-46.

These materials consist of an insulating matrix, such as an epoxy, filled with small, uniform sized latex spheres, coated with a thin layer of Nickel and gold. The loading density of the spheres is low, typically less than 15%. This adhesive is placed between the pads of the die and the matching pads of the substrate. When the die is pressed against the substrate, some of these spheres are trapped between the pads and are compressed.
The loading density of spheres must be high enough that there are multiple spheres on every pad, but low enough that there is no continuous chain of touching spheres between pads. Figure 9-47 illustrates the process window, which for the particular case of this particle size and pad spacing is 2% to 12% loading.

Figure 9-46. ACF Bonding Sequence

Figure 9-47. Process Window for Conductive Particle Concentration: High Enough for Z Axis Contact, Low Enough for No Shorts
Many variations on this principle are possible. When the conductive adhesive is applied as a film the process is termed ACF (anisotropically conductive film). The polymer can be a thermoset or UV curable polymer. For LCD applications, the chip is typically mounted to a glass substrate, and the UV can be projected through the glass substrate.

The chief limitation with all of these approaches is the relatively high contact resistance of the joint, and low current carrying capacity. Contact resistances can be on the order of 1 Ohm, and current carrying capacity can be limited to under 100mA per pad. These features will limit the application of this technique for digital interconnects, but pose no limitation for LCD interconnects.

Challenges for Flip Chip

With the wonderful benefits of flip chip attach, it is useful to ask why it is not used more. There are three fundamental reasons.

First, there is inertia. There is risk involved in changing a process that works. If a compelling, enabling, or cost advantage does not exist, the conventional methods will continue to be used.

Second is the requirements on the substrate. As pointed out in early chapters, to interconnect and route the high density of pads requires a substrate with both fine lines, and for high pin count chips, a high via density. This means expensive substrates such as cofired ceramic or microvia PCBs. The total cost of ownership may be too high for many applications.

Finally, the infrastructure for flip chip attach is still young. The four highest volume users, IBM, Motorola, Delco and AT&T, have implemented and taken responsibility for the infrastructure themselves. It will take more time for this infrastructure to propagate into the commercial merchant market.

However, even given these barriers, the risk takers are switching to flip chip. At the high end, die with a large number of I/O are being implemented in flip chip to gain the highest performance, at a cost savings over wirebond.

At the low end, small chips are being implemented in consumer applications as DCA onto laminate substrates to get the smallest possible form factors.

It is estimated that the number of flip chip devices is increasing at the rate of 38% per year, and will continue to grow at this rate through the year 2000. This opportunity will motivated the growth of the merchant infrastructure.
TAB (TAPE AUTOMATED BONDING)

“TAB is entering its third decade of being the technology of the future.”
— B.E. Kurtz, Allied-Signal, 1990

It has often been said that TAB is the only way of implementing fine-pitch pads. It is currently in production for 3.5mil inner lead bonds on the Pentium TCP (tape carrier package). An example of a TAB leadframe with 3mil pitch is shown in Figure 9-48. Two mil pitch TAB bonding has been demonstrated in the lab.

There are many strategies for implementing TAB, depending on whether the chip is specially prepared, and whether the inner leads are gang bonded. Figure 9-49 describes the various options. For example, the MCAIII chip is gold bumped and the inner leads of tinned copper form a gold-tin bond. Hewlett-Packard TAB bonds to the aluminum pads of a chip with no special preparation, using a gold-plated leadframe and single point bonding.

The metallurgy associated with TAB attach is complicated. Ultimately, aluminum pads on the chip are attached to solder or gold pads on the substrate with a copper core leadframe going between them. On the bond on the chip, the metallurgy is gold-gold, aluminum-gold, gold-tin, or solder-solder. The precise time-temperature-pressure conditions at which the joint is formed will influence the intermetallics that form and the resulting reliability. This means very careful attention to the details of the manufacturing process is critical—all the more so when the inner leads are gang bonded. These manufacturing challenges have contributed to the slow acceptance of TAB in the U.S.
A main advantage of TAB over wirebond, for bare dice, is that it offers a cleaner interface for the transfer of robust, tested die from a chip vendor to an end user. This is prompting the introduction of chip-on-tape (COT) as a deliverable format or item. Because of the poor press TAB has received, the name has been changed to Tape Carrier Package (TCP).

An example of a TCP chip is shown in Figure 9-50. If the capital equipment to handle TAB is already in place, or the production volume is high enough to justify it, TAB may result in assembly cost savings. The electrical performance features of TAB depend more on the substrate to which the outer leads are attached and the resulting geometry of the leads than the use of a TAB leadframe per se.

![Figure 9-50. Chip on Tape (COT) or Tape Carrier Package (TCP)](source)

Figure 9-49. TAB Options

<table>
<thead>
<tr>
<th>Chip Metalization</th>
<th>Tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al pads</td>
<td>Gold-plated copper – single-point, thermosonic bonding</td>
</tr>
<tr>
<td>Al → gold-plated pads</td>
<td>Gold- or tin-bumped tape, gang bonding</td>
</tr>
<tr>
<td>Al → gold-bumped pads</td>
<td>Gold- or tin-plated tape, gang bonding</td>
</tr>
<tr>
<td>Al → solder-bumped pads</td>
<td>Gold-, tin-, or solder-plated tape, gang bonding</td>
</tr>
</tbody>
</table>

Source: ICE, "Roadmaps of Packaging Technology" 15841
It is often said that the inductance of TAB leads is lower than that of wirebonded leads. This depends very strongly on the specific case. It is very possible for a wirebond lead to have an inductance much less than a TAB lead. The inductance of wirebonds 50mils long is less than 1nH. For a TAB fanout that goes from a 6mil inner lead pitch to a 20mil outer lead pitch, such as a TapePak, the length of a trace can be over 0.5 inch long. Its inductance would be almost 10x the wirebond example.