Construction Analysis

SGS-Thomson M17C1001
1Mb UVEPROM

Report Number: SCA 9612-518
<table>
<thead>
<tr>
<th>Category</th>
<th>Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEMBLY</td>
<td>1 - 4</td>
</tr>
<tr>
<td>DIE LAYOUT AND IDENTIFICATION</td>
<td>5 - 7</td>
</tr>
<tr>
<td>PHYSICAL DIE STRUCTURES</td>
<td>8 - 30</td>
</tr>
<tr>
<td>COLOR DRAWING OF DIE STRUCTURE</td>
<td>Figure 20</td>
</tr>
<tr>
<td>MEMORY CELLS</td>
<td>21 - 28</td>
</tr>
<tr>
<td>GENERAL CIRCUIT LAYOUT</td>
<td>Figure 29</td>
</tr>
<tr>
<td>I/O STRUCTURE</td>
<td>Figure 30</td>
</tr>
</tbody>
</table>
INDEX TO TEXT

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MAJOR FINDINGS</td>
<td>1</td>
</tr>
<tr>
<td>TECHNOLOGY DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>Assembly</td>
<td>2</td>
</tr>
<tr>
<td>Die Process</td>
<td>2 - 3</td>
</tr>
<tr>
<td>ANALYSIS RESULTS I</td>
<td></td>
</tr>
<tr>
<td>Package and Assembly</td>
<td>4</td>
</tr>
<tr>
<td>ANALYSIS RESULTS II</td>
<td></td>
</tr>
<tr>
<td>Die Process</td>
<td>5 - 6</td>
</tr>
<tr>
<td>TABLES</td>
<td></td>
</tr>
<tr>
<td>Procedure</td>
<td>7</td>
</tr>
<tr>
<td>Overall Quality Evaluation</td>
<td>8</td>
</tr>
<tr>
<td>Package Markings</td>
<td>9</td>
</tr>
<tr>
<td>Wirebond Strength</td>
<td>9</td>
</tr>
<tr>
<td>Die Material Analysis</td>
<td>9</td>
</tr>
<tr>
<td>Horizontal/Vertical Dimensions</td>
<td>10</td>
</tr>
</tbody>
</table>
INTRODUCTION

This report describes a construction analysis of the SGS M27C1001 1-MEG UVEPROM. Five devices packaged in 32-pin Ceramic Dual In-Line Packages (CERDIPs) with a quartz window were received for the analysis. Devices were date coded 9514.

MAJOR FINDINGS

Questionable Items: None.

Special Features:

- Tungsten plugs used at all contacts.
- Sub-micron gate lengths (0.5 N-channel and P-channel.)
- Sidewall spacers left in place on only one side in the array.
- Titanium on titanium-nitride barrier metal.

1These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.
TECHNOLOGY DESCRIPTION

Assembly:

- Devices were packaged in 32-pin Ceramic Dual In-Line Packages (CERDIPs). A quartz window was present over the die.

- The package consisted of two ceramic halves held together by a glass frit. The die was mounted to the cavity floor using a silver-filled glass.

- Die separation was by sawing.

- Wirebonding was by the ultrasonic wedge bond method using 1.2 mil O.D. aluminum wire.

- All pins were connected and pins 16 and 32 (Vcc and Vss) had multiple bonding wires.

Die Process:

- Devices were fabricated using a selective oxidation, twin-well CMOS process in a P substrate. No epi was used.

- No die coat was present.

- Passivation consisted of two layers of silicon-dioxide.

- Metallization consisted of a single layer of dry-etched aluminum with a titanium-nitride cap and titanium over titanium-nitride barrier. Tungsten plugs were used at all contacts.

- Pre-metal dielectric consisted of a layer of borophosphosilicate glass (BPSG) over densified oxides. The glass was refloved prior to contact cuts only.
TECHNOLOGY DESCRIPTION (continued)

- Two layers of poly were used on the die. Poly 2 (tungsten silicide) was used to form all gates on the die and the select/word line in the EPROM cell. Poly 1 (no silicide) was used exclusively in the cell to form the floating gates. Direct poly-to-diffusion (buried) contacts were not used. Interpoly dielectric consisted of oxide only (no nitride).

- Standard implanted N+ and P+ diffusions formed the sources/drains of the CMOS transistors. An LDD process was used with oxide sidewall spacers left in place.

- Local oxide (LOCOS) isolation. A slight step was present at the edge of the well indicating a twin-well process was used.

- Memory cells consisted of a standard stacked poly EPROM design. Metal was used to form the bit lines. Poly 2 was used to form the word/select lines, and poly 1 was used exclusively to form the floating gates. Sidewall spacers were left on only one side of the gates in the array.

- Redundancy fuses were not present.
ANALYSIS RESULTS

Package and Assembly: Figures 1 - 4

Questionable Items:¹ None.

Special Features: None.

General Items:

• Devices were packaged in 32-pin Ceramic Dual In-Line Packages (CERDIPs).

• Overall package quality: Good. No significant defects were noted in the external or internal portions of the package. No cracks or chips were present. The package consisted of two ceramic halves held together by a glass frit. A quartz window was present over the die.

• Leadframe: The leadframe was constructed of iron-nickel. Some small voids were noted internally in the glass frit seal; however; no cracks were noted and the overall effect is insignificant.

• Die dicing: Die separation was by sawing of normal quality. No large cracks or chips were present.

• Die attach: A silver-filled glass was used to attach the die to the header.

• Wirebonding was by the ultrasonic wedge bond method using 1.2 mil O.D. aluminum wire. The clearance of the wires from the edge of the die was good. All bond pull strengths were normal (see page 10). No bond lifts occurred.

¹These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.
ANALYSIS RESULTS II

Die Process:

Figures 5 - 30

Questionable Items:¹ None.

Special Features:

• Tungsten plugs used at all contacts.

• Sub micron gate lengths (0.5 N-channel and P-channel).

• Sidewall spacers on only one side of gates in array.

• Titanium on titanium-nitride barrier metal.

General Items:

• Fabrication process: Devices were fabricated using a selective oxidation, twin-well CMOS process in a P substrate. No epi was used.

• Process implementation: Die layout was clean and efficient. Alignment was good at all levels. No damage or contamination was found.

• Die coat: No die coat was present.

• Overlay passivation: Two layers of silicon-dioxide. Overlay integrity test indicated defect-free passivation. Edge seal was good.

• Metallization: A single layer of metal consisting of aluminum with a titanium-nitride cap and a titanium over titanium-nitride barrier. Tungsten plugs were used at all contacts.

¹These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.
ANALYSIS RESULTS II (continued)

• Metal patterning: The metal layer was patterned by a dry etch of normal quality. Contacts were completely surrounded by metal.

• Metal defects: No voiding, notching, or neckdown was found in the metal layer. No silicon nodules were noted following the removal of the metal layer.

• Metal step coverage: Minimal aluminum thinning was present due to the use of plugs.

• Pre-metal dielectric: A layer of borophosphosilicate glass (BPSG) over various densified oxides was used under the metal. The phosphorus level was very high (see page 10). Reflow was performed prior to contact cuts only. No problems were found.

• Contact defects: Contact cuts were defined by a dry-etch process. No significant over-etching of the contacts was noted.

• Polysilicon: Two layers of poly were used on the die. Poly 2 (tungsten silicide) was used to form all gates on the die and the select/word line in the EPROM cell. Poly 1 (no silicide) was used exclusively in the cell array to form the floating gates. Direct poly-to-diffusion (buried) contacts were not used. Interpoly dielectric consisted of a thin layer of oxide only (no nitride). Definition was by a dry etch of normal quality. No poly stringers or spurs were present.

• Diffusions: Standard implanted N+ and P+ diffusions formed the sources/drains of the CMOS transistors. An LDD process was used with oxide sidewall spacers left in place.

• Isolation: Local oxide (LOCOS) isolation was used. The slight step present at the well boundary indicates a twin-well process was employed.

• EPROM array: The memory cells consisted of a standard stacked poly EPROM design. Metal was used to form the bit lines. Poly 2 was used to form the word/select lines, and poly 1 was used exclusively to form the floating gates. Interpoly dielectric consisted of oxide only. Cell pitch was 1.9 x 1.9 micron.

• Redundancy fuses were not present on the die.
The devices were subjected to the following analysis procedures:

- External inspection
- X-ray
- Delid
- Internal optical inspection
- SEM of passivation
- Passivation integrity test
- Wirepull test
- Passivation removal
- SEM inspection of metal
- Metal removal and inspect barrier
- Delayer to silicon and inspect poly/die surface
- Die sectioning (90° for SEM)*
- Die material analysis
- Measure horizontal dimensions
- Measure vertical dimensions

*Delineation of cross-sections is by silicon etch unless otherwise indicated.
OVERALL QUALITY EVALUATION: Overall Rating: Good

DETAIL OF EVALUATION

<table>
<thead>
<tr>
<th>Category</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package integrity</td>
<td>N</td>
</tr>
<tr>
<td>Package markings</td>
<td>N</td>
</tr>
<tr>
<td>Die placement</td>
<td>N</td>
</tr>
<tr>
<td>Wirebond placement</td>
<td>N</td>
</tr>
<tr>
<td>Wire spacing</td>
<td>N</td>
</tr>
<tr>
<td>Wirebond quality</td>
<td>N</td>
</tr>
<tr>
<td>Die attach quality</td>
<td>N</td>
</tr>
<tr>
<td>Dicing quality</td>
<td>N</td>
</tr>
<tr>
<td>Die attach method</td>
<td>Silver-filled glass</td>
</tr>
<tr>
<td>Dicing method</td>
<td>Sawn</td>
</tr>
<tr>
<td>Wirebond method</td>
<td>Ultrasonic wedge bonds using 1.2 mil aluminum wire.</td>
</tr>
<tr>
<td>Die surface integrity:</td>
<td></td>
</tr>
<tr>
<td>Toolmarks (absence)</td>
<td>G</td>
</tr>
<tr>
<td>Particles (absence)</td>
<td>G</td>
</tr>
<tr>
<td>Contamination (absence)</td>
<td>G</td>
</tr>
<tr>
<td>Process defects (absence)</td>
<td>G</td>
</tr>
<tr>
<td>General workmanship</td>
<td>G</td>
</tr>
<tr>
<td>Passivation integrity</td>
<td>G</td>
</tr>
<tr>
<td>Metal definition</td>
<td>N</td>
</tr>
<tr>
<td>Metal integrity</td>
<td>N</td>
</tr>
<tr>
<td>Contact coverage</td>
<td>G</td>
</tr>
<tr>
<td>Contact registration</td>
<td>G</td>
</tr>
</tbody>
</table>

G = Good, P = Poor, N = Normal, NP = Normal/Poor
PACKAGE MARKINGS (TOP)

M27C1001
-15F1
BHHA1
(LOGO) 9514E
KOREA

BOTTOM

M611
4108

WIREBOND STRENGTH

Wire material: 1.2 mil O.D. aluminum
Die pad material: aluminum

Sample #

of wires pulled: 22
Bond lifts: 0
Force to break - high: 7g
- low: 5g
- avg.: 5.8g
- std. dev.: 0.6

DIE MATERIAL ANALYSIS

Overlay passivation: Two layers of silicon dioxide with 4.0 wt. percent phosphorus.
Metallization: Aluminum (Al) with a titanium-nitride (TiN) cap and a titanium (Ti) over titanium-nitride (TiN) barrier.
Poly: Tungsten (W) silicide.
Pre-metal dielectric: A layer of borosphosilicate glass (BPSG) containing 9.75 wt. % phosphorus and 2.5 wt. % boron over densified oxides.
HORIZONTAL DIMENSIONS

Die size: 3.4 x 3.4 mm (134 x 134 mils)
Die area: 11.5 mm² (17,956 mils²)
Min pad size: 0.14 x 0.14 mm (5.6 x 5.6 mils)
Min pad window: 0.13 x 0.13 mm (5.2 x 5.2 mils)
Min pad space: 1.1 mils
Min metal width: 1.3 micron
Min metal space: 1.0 micron
Min metal pitch: 2.3 microns
Min contact: 0.7 micron
Min poly 2 width: 0.5 micron
Min poly 2 space: 0.6 micron
Min poly 1 width: 0.5 micron
Min gate length - (N-channel): 0.5 micron
- (P-channel): 0.5 micron
Cell gate: 0.5 micron
Cell pitch: 1.9 x 1.9 micron
Cell size: 3.6 microns

VERTICAL DIMENSIONS

Die thickness: 0.5 mm (19 mils)

Layers:
- Passivation 2: 0.4 micron
- Passivation 1: 0.35 micron
- Metal - cap: 0.04 micron (approximate)
 - aluminum: 0.5 micron
 - barrier: 0.2 micron
 - plugs: 0.9 micron
- Pre-metal dielectric: 0.5 - 0.95 micron
- Oxide on poly 2: 0.1 micron
- Poly 2 - silicide: 0.2 micron
 - poly 2: 0.3 micron
- Poly 1: 0.15 micron
- Local oxide: 0.45 micron
- N+ S/D: 0.2 micron
- P + S/D: 0.25 micron
- N-well: 4.5 microns (approximate)
- P-well: Could not delineate

*Physical gate length.
Figure 1. Package photograph and pinout of the SGS M27C1001. Mag. 2.4x.
Figure 2. X-ray views of package. Mag. 2x.
Figure 3. SEM views of dicing and edge seal. 60°.
Figure 4. SEM views of typical wirebonding. Mag. 600x, 60°.
Figure 5. Whole die photograph of the SGS M27C1001. Mag. 40x.
Figure 6. Optical photographs of markings on die surface. Mag. 500x.
Figure 7. Additional optical photographs of markings on die surface.
Figure 8. Perspective SEM views of overlay passivation coverage. 60°.
Figure 9. SEM section views of general circuitry. Mag. 10,000x.
Figure 10. SEM section views of metal line profiles.
Figure 11. Topological SEM views of metal patterning. 0°.
Figure 12. SEM views of metal coverage. 60°.
Figure 13. SEM views of barrier coverage and a metal contact. Mag. 26,000x.
Figure 14. SEM section views of metal contacts. Mag. 26,000x.

- Metal-to-Poly 2
- Metal-to-N+
- Metal-to-P+
Figure 15. Topological SEM views of poly 2 patterning. 0°.
Figure 16. Perspective SEM views of poly coverage. 60°.
Figure 17. SEM section views of typical transistors. Mag. 40,000x.
Figure 18. SEM view of a local oxide birdsbeak. Mag. 40,000x.

Figure 19. Section views illustrating the well structure.

Mag. 52,000x

Mag. 800x
Orange = Nitride, Blue = Metal, Yellow = Oxide, Green = Poly, Red = Diffusion, and Gray = Substrate

Figure 20. Color cross section drawing illustrating device structure.
Figure 21. Perspective SEM views of the EPROM cell array. Mag. 13,000x, 60°.
Figure 22. Perspective SEM views of the EPROM cell array. 60°.
Figure 23. Topological SEM views of the EPROM cell. Mag. 6500x, 0°.
Figure 24. Topological views and schematic of the EPROM cell.
Mag. 13,000x, 0°.
Figure 25. SEM section views of the EPROM cell array (parallel to bit lines).
glass etch

Figure 26. SEM section detail views of the EPROM cell (parallel to bit line). Mag. 52,000x.
Figure 27. SEM section views of the EPROM cell array (parallel to word line).
Figure 28. SEM section views of the EPROM cell array (parallel to word lines).
Figure 29. Optical photographs of general circuitry. Mag. 800x.
Figure 30. Optical photographs of a I/O structure. Mag. 200x.