Construction Analysis

Rockwell 11577-11
Digital Correlator

Report Number: SCA 9707-546
INDEX TO TEXT

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MAJOR FINDINGS</td>
<td>1</td>
</tr>
<tr>
<td>TECHNOLOGY DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>Assembly</td>
<td>2</td>
</tr>
<tr>
<td>Die Process</td>
<td>2 - 3</td>
</tr>
<tr>
<td>ANALYSIS RESULTS I</td>
<td></td>
</tr>
<tr>
<td>Assembly</td>
<td>4</td>
</tr>
<tr>
<td>ANALYSIS RESULTS II</td>
<td></td>
</tr>
<tr>
<td>Die Process and Design</td>
<td>5 - 7</td>
</tr>
<tr>
<td>ANALYSIS PROCEDURE</td>
<td>8</td>
</tr>
<tr>
<td>TABLES</td>
<td></td>
</tr>
<tr>
<td>Overall Evaluation</td>
<td>9</td>
</tr>
<tr>
<td>Package Markings</td>
<td>10</td>
</tr>
<tr>
<td>Wirebond Strength</td>
<td>10</td>
</tr>
<tr>
<td>Die Material Analysis</td>
<td>10</td>
</tr>
<tr>
<td>Horizontal Dimensions</td>
<td>11</td>
</tr>
<tr>
<td>Vertical Dimensions</td>
<td>12</td>
</tr>
</tbody>
</table>
INTRODUCTION

This report describes a competitive analysis of the Rockwell 11577-11 digital correlator. One device packaged in a 144-pin Square Quad Flat Package (SQFP) was received for the analysis. The device was taken from a GPS receiver chipset manufactured by IST. The IC was date coded 9636.

MAJOR FINDINGS

Questionable Items:

1. Metal 2 aluminum thinned up to 100 percent at some locations of some vias. Barrier metal remained intact to provide continuity.

2. Metal 1 aluminum thinned up to 100 percent at some locations of some contacts. Barrier metal remained intact to provide continuity.

Special Features:

- Titanium silicided diffusion structures.

1 These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.

2 Seriousness depends on design margins.
TECHNOLOGY DESCRIPTION

Assembly:

- Device was encapsulated in a 144-pin plastic Square Quad Flat Package (SQFP).
- Copper (Cu) leadframe was internally plated with silver (Ag).
- External pins were tinned with tin-lead (SnPb) solder.
- Lead-locking provisions (holes) at all pins.
- Thermosonic ball bonding using 1.1 mil O.D. gold wire.
- Pins 139 - 143 were not connected.
- Sawn dicing (full-depth).
- Silver-filled epoxy die attach.

Die Process:

- Fabrication process: Selective oxidation CMOS process employing P-wells in an N-epi on a P-substrate.
- Final passivation: A layer of nitride over a layer of glass.
- Metallization: Two levels of metal defined by standard dry-etch techniques. Both consisted of aluminum with a titanium-nitride cap and barrier. Standard vias and contacts were used (no plugs).
- Interlevel dielectric: Interlevel dielectric consisted of two layers of silicon-dioxide with a planarizing spin-on-glass (SOG) between them.
TECHNOLOGY DESCRIPTION (continued)

• Polysilicon: A single layer of polycide (titanium silicide on poly) was used to form all gates on the die. Direct poly-to-diffusion (buried) contacts were not used. Definition was by a dry etch of normal quality.

• Diffusions: Standard implanted N+ and P+ diffusions formed the sources/drains of the CMOS transistors. An LDD process was used with oxide sidewall spacers left in place.

• Wells: P-well CMOS process in an N-epi on a P-substrate. No step was present at well boundaries.

• Memory cells: On-board MROM memory design used metal 2 “piggy-back” word lines via metal 1 links. Metal 1 was used to form the bit lines. Polycide was used to form the word lines. Programming is achieved at the field (local) oxide cut.

• Redundancy: Fuses were not used.

• Design features: Slotted and beveled Metal 2 bus lines were employed for stress relief. Both metals one and two were used in the bond pads.
ANALYSIS RESULTS

Assembly: Fig. 1 - 4

Questionable Items: None.

General Items:

- The device was encapsulated in a 144-pin plastic Square Quad Flat Package (SQFP).

- Overall package quality: Good. Internal plating of the copper leadframe was silver. The leadframe was dimpled to add structural integrity. External pins were tinned with tin-lead (SnPb). No cracks or voids present. No gaps were noted at lead exits.

- Lead-locking provisions (holes) were present at all pins.

- Wirebonding: Thermosonic ball method using 1.1 mil O.D. gold wire. No bond lifts occurred during wire pull tests and bond pull strengths were normal. No problems are foreseen.

- Pins 139 - 143 were not connected.

- Die attach: Silver-filled epoxy of good quality. No voids were noted in the die attach and no problems are foreseen.

- Die dicing: Die separation was by sawing (full depth) with normal quality workmanship.
ANALYSIS RESULTS II

Die Process and Design:

Figures 5 - 34

Questionable Items: 1

- Metal 2 aluminum thinned up to 100 percent 2 at some via locations. Barrier metal remained intact to provide continuity.

- Metal 1 aluminum thinned up to 100 percent 2 at some contact locations. Barrier metal remained intact to provide continuity.

Special Features:

- Titanium silicided diffusion structures.

General items:

- Fabrication process: Devices were fabricated using selective oxidation CMOS process employing P-wells in an N-epi on a P-substrate.

- Process implementation: Die layout was clean and efficient. Alignment was good at all levels. No damage or contamination was found.

- Die coat: No die coat was present.

- Final passivation: A layer of nitride over a layer of glass. Overlay integrity test indicated defect-free passivation. Edge seal was good as the passivation extended

1These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.

2Seriousness depends on design margins.
ANALYSIS RESULTS II (continued)

the metal at the edge of the die. The voids above metal 2 vias are not considered areas of concern.

- Metallization: Two levels of metal were used. Both consisted of aluminum with titanium-nitride caps and barriers. Standard vias and contacts were used (no plugs).

- Metal patterning: Both metal levels were patterned by a dry etch of normal quality.

- Metal defects: No voiding, notching, or neckdown was noted in either of the metal layers. No silicon nodules were noted following removal of either metal.

- Metal step coverage: Metal 2 aluminum thinned up to 100 percent at several via locations. Barrier metal maintained continuity. Metal 1 aluminum also thinned up to 100 percent at some contact locations. Typical metal 1 thinning was 90 percent.

- Interlevel dielectric: Interlevel dielectric consisted of two layers of silicon-dioxide with a planarizing spin-on-glass (SOG) between them. The SOG had been etched back.

- Pre-metal glass: A layer of reflow glass (BPSG) over densified oxide was used under metal 1. Reflow was performed prior to contact cuts only.

- Contact defects: Contact and via cuts were defined by a two-step process. No over-etching of the contacts or vias was noted. No problems were found, except for one instance found and shown in Figure 13.

- Polysilicon: A single layer of polycide (titanium silicide on poly) was used to form all gates on the die. Direct poly-to-diffusion (buried) contacts were not used. Definition was by a dry-etch of normal quality.

- Diffusions: Standard implanted N+ and P+ diffusions formed the sources/drains of the CMOS transistors. Diffusions were silicided (salicide process) with titanium.
ANALYSIS RESULTS II (continued)

An LDD process was used with oxide sidewall spacers left in place. No problems were found.

• Isolation: LOCOS (local oxide isolation). No step was present at the well boundaries.

• Memory cells: An MROM was present on the die. Metal 2 provided “piggy-back” word lines via metal 1 links. Metal 1 was used to form the bit lines. Polycide formed the word lines and gates. Programming was achieved through field (local) oxide masking.

• Redundancy: Fuses were not present on the die.
PROCEDURE

The devices were subjected to the following analysis procedures:

- External inspection
- X-ray
- Decapsulate
- Internal optical inspection
- SEM of assembly features and passivation
- Wirepull test
- Passivation integrity test
- Passivation removal
- SEM inspection of metal 2
- Metal 2 removal and inspect barrier
- Delayer to metal 1 and inspect
- Metal 1 removal and inspect barrier
- Delayer to silicon and inspect poly/die surface
- Die sectioning (90° for SEM)*
- Die material analysis
- Measure horizontal dimensions
- Measure vertical dimensions

Delineation of cross-sections is by silicon etch unless otherwise indicated.
OVERALL QUALITY EVALUATION: Overall Rating: Normal

DETAIL OF EVALUATION

Package integrity G
Package markings N
Die placement N
Die attach quality G
Wire spacing G
Wirebond placement G
Wirebond quality G
Dicing quality G
Wirebond method Thermosonic ball bond method using 1.1 mil
 O.D. gold wire.
Die attach method Silver-epoxy
Dicing method Sawn (full depth)

Die surface integrity:
 Tool marks (absence) G
 Particles (absence) G
 Contamination (absence) G
 Process defects G
General workmanship N
Passivation integrity G
Metal definition N
Metal integrity N
Metal registration N
Contact coverage N
Contact registration N

G = Good, P = Poor, N = Normal, NP = Normal/Poor
PACKAGE MARKINGS

TOP

11577-11
HONG KONG
9636
B24725.2 (LOGO)

WIREBOND STRENGTH

Wire material: 1.1 mil O.D. gold
Die pad material: aluminum
Material at package lands: silver

Sample # 1

of wires tested: 20
Bond lifts: 0
Force to break - high: 13.0g
 - low: 6.0g
 - avg.: 8.1g
 - std. dev.: 1.7

DIE MATERIAL ANALYSIS

Overlay passivation: A layer of silicon-nitride over a layer of glass.
Metallization 2: Aluminum (Al) with a titanium-nitride (TiN) cap and barrier.
Metallization 1: Aluminum (Al) with a titanium-nitride (TiN) cap and barrier.
Polycide: Titanium (Ti) silicide on poly.
Diffusions: Titanium (Ti) salicide.
Die size: 8.5 x 8.45 mm (338 x 333 mils)

Die area: 72.6 mm2 (112,554 mils2)

Min pad size: 0.13 x 0.13 mm (5 x 5 mils)

Min pad window: 0.11 x 0.11 mm (4.5 x 4.5 mils)

Min pad space: 0.03 mm (1.1 mils)

Min metal 2 width: 1.2 micron

Min metal 2 space: 1.4 micron

Min metal 2 pitch: 2.6 microns

Min metal 1 width: 1 micron

Min metal 1 space: 0.7 micron

Min metal 1 pitch: 1.7 micron

Min via (M2-to-M1): 0.9 micron (round)

Min contact: 1 micron (round)

Min polycide width: 0.6 micron

Min polycide space: 0.4 micron

Min gate length* - (N-channel): 0.7 micron

- (P-channel): 0.6 micron

*Physical gate length.
Vertical Dimensions

Die thickness: 0.4 mm (15 mils)

Layers

- **Passivation 2:** 0.5 micron
- **Passivation 1:** 0.25 micron
- **Metal 2 - cap:** 0.06 micron (approx.)
 - **aluminum:** 0.7 micron
 - **barrier:** 0.1 micron
- **Intermetal dielectric - glass 2:** 0.35 micron (average)
 - **SOG:** 0 - 1.1 micron
 - **glass 1:** 0.3 micron (average)
- **Metal 1 - cap:** 0.06 micron (approx.)
 - **aluminum:** 0.5 micron
 - **barrier:** 0.1 micron
- **Pre-metal glass:** 0.55 micron (average)
- **Polycide - silicide:** 0.05 micron (approx.)
 - **poly:** 0.2 micron
- **Local oxide:** 0.4 micron
- **N+ S/D diffusion:** 0.3 micron (approx.)
- **P+ S/D diffusion:** 0.25 micron
- **P-well:** 4.5 micron (approx.)
- **N-epi:** 14 microns
INDEX TO FIGURES

ASSEMBLY
- Figures 1 - 4

DIE LAYOUT AND IDENTIFICATION
- Figures 5 - 7

PHYSICAL DIE STRUCTURES
- Figures 8 - 34

COLOR DRAWING OF DIE STRUCTURE
- Figure 25

MROM MEMORY CELL STRUCTURES
- Figures 26 - 32

CIRCUIT LAYOUT AND I/O
- Figures 33 - 34
Figure 1. Package photographs of the Rockwell 11577-11. Mag. 4x.
Figure 2. X-ray of the Rockwell 11577-11. Mag. 8x.
Figure 3. SEM views of dicing and edge seal. 60°.
Figure 4. SEM section views of the edge seal.
Figure 5. Whole die photograph of the Rockwell 11577-11. Mag. 20x.
Figure 6. Optical views of die markings. Mag. 155x.
Figure 7. Optical views of die corners. Mag. 100x.
Figure 8. SEM section views illustrating general structure.

glass etch, Mag. 14,000x

Mag. 12,000x
Figure 9. SEM view illustrating final passivation. Mag. 4800x, 60°.

Figure 10. SEM section views of metal 2 line profiles.

- Mag. 26,000x
- Mag. 52,000x
Figure 11. Topological SEM views of metal 2 patterning. 0°.
Figure 12. Perspective SEM views of metal 2 step coverage. 60°.
Figure 13. SEM section views illustrating typical vias.
Figure 14. SEM section views of metal 1 line profiles.
Figure 15. Topological SEM views of metal 1 patterning. 0°.
Figure 16. Perspective SEM views of metal 1 step coverage. 60°.
Figure 17. SEM section views of typical metal 1 contacts. Mag. 26,000x.
Figure 18. SEM section views illustrating silicided diffusion structures.
Figure 19. Topological SEM views of poly patterning. 0°.
Figure 20. Perspective SEM views of poly coverage. 60°.

Mag. 6500x

Mag. 17,600x
Figure 21. SEM section views of a typical P-channel transistor.

Mag. 26,000x

Mag. 52,000x
Figure 22. SEM section views of typical transistors.

N-channel, Mag. 26,000x

N-channel, Mag. 52,000x

glass etch, Mag. 52,000x
Figure 23. SEM section views of local oxide isolation and typical birdsbeak.
Figure 24. SEM section views illustrating well structure.
Orange = Nitride, Blue = Metal, Yellow = Oxide, Green = Poly,
Red = Diffusion, and Gray = Substrate

Figure 25. Color cross section drawing illustrating device structure.
Figure 26. Perspective SEM views of the MROM array. Mag. 2500x, 60°.
Figure 27. Detailed perspective SEM views of the MROM array. Mag. 10,000x, 60°.
Figure 28. Detailed SEM views of programmed cells. 60°.

Mag. 20,000x

Mag. 40,000x
Figure 29. Topological SEM views of the MROM array. Mag. 2100x, 0°.
Figure 30. Detailed topological views of the MROM cell array. Mag. 13,000x, 0°.
Figure 31. SEM section views of MROM array.

Mag. 13,000x

Mag. 26,000x
Figure 32. SEM section views of programmed cells. Mag. 52,000x.
Figure 33. Optical views of typical circuitry and I/O structure.
Figure 34. SEM section views illustrating bond pad structure.