Construction Analysis

SGS-Thomson M28C64-121
64K EEPROM

Report Number: SCA 9710-559
INTRODUCTION

This report describes a construction analysis of the SGS-Thomson M28C64-121 64K EEPROM. Five devices packaged in 28-pin Dual In-Line Packages (DIPs) were received for the analysis. Devices were date coded 9621.

MAJOR FINDINGS

Questionable Items: None.

Special Features: None.

1These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.
TECHNOLOGY DESCRIPTION

Assembly:

- Devices were packaged in 28-pin Dual In-Line Packages (DIPs).
- Lead-locking provisions (holes and anchors) at all pins.
- Wirebonding was by the thermosonic ball bond method using 1.2 mil O.D. gold wire.
- All pins except pin 26 were connected. No multiple bonding wires were noted.
- Die separation was by sawing (full depth).
- Silver-filled epoxy die attach.

Die Process:

- Devices were fabricated using a selective oxidation, N-well CMOS process in a P substrate. No epi was used.
- No die coat was present.
- Passivation consisted of two layers of silicon-dioxide (probably undoped).
- Metallization consisted of a single layer of dry-etched aluminum. The aluminum contained a titanium-nitride cap and barrier. There appeared to be a thin layer of titanium-aluminum (TiAl) precipitate or titanium (Ti) above the barrier (see Figure 11). A thin titanium adhesion layer was used under the barrier. Standard contacts were used (no plugs).
TECHNOLOGY DESCRIPTION (continued)

- Pre-metal dielectric consisted of a layer of CVD glass (probably BPSG) over various densified oxides. The glass appeared to be reflowed following contact cuts.

- A single layer of dry-etched polycide (poly and tungsten silicide) was used. This layer formed all gates on the die, and in the cell array it formed the capacitors, word lines, and tunnel oxide device.

- Standard implanted N+ and P+ diffusions formed the sources/drains of the MOS transistors. An LDD process was used with oxide sidewall spacers left in place.

- Local oxide (LOCOS) isolation. No step was present at the edge of the well boundaries.

- The memory cell consisted of a standard EEPROM design. Metal was used to form the bit lines. Poly was used to form the word/select lines, capacitors, and the tunnel oxide devices.

- Redundancy fuses were not present.
ANALYSIS RESULTS I

Package and Assembly:

Figures 1 - 5

Questionable Items:¹ None.

Special Features: None.

General Items:

• Devices were packaged in 28-pin Dual In-Line Packages (DIPs).

• Overall package quality: Good. No defects were noted externally or internally on the package. All pins were well formed.

• Lead-locking provisions (anchors and holes) were present.

• Wirebonding was by the thermosonic ball bond method using 1.2 mil O.D. gold wire. The clearance of the wires was normal. Bond pull strengths were normal (see page 9). No problems were noted.

• Die attach: A silver-epoxy was used to attach the die to the header. No significant voids were noted.

• Die dicing: Die separation was by sawing of normal quality. No large cracks or chips were present.

¹These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.
ANALYSIS RESULTS II

Die Process: Figures 6 - 26

Questionable Items:¹ None.

Special Features: None.

General Items:

• Fabrication process: Devices were fabricated using a selective oxidation, N-well CMOS process in a P substrate. No epi was used.

• Process implementation: Die layout was clean and efficient. Alignment was good at all levels. No damage or contamination was found.

• Die coat: No die coat was present.

• Overlay passivation: The passivation consisted of two layers of silicon-dioxide (probably undoped). Overlay integrity test indicated defect-free passivation. Edge seal was good.

• Metallization: A single layer of metal consisting of aluminum with a titanium-nitride cap and barrier. There appeared to be a thin layer of titanium-aluminum (TiAl) precipitate or titanium (Ti) above the barrier. A thin titanium adhesion layer was used under the barrier. Standard contacts were used (no plugs). No problems were noted.

• Metal patterning: The metal layer was patterned by a dry etch of normal quality. Contacts were completely surrounded by metal and metal lines were widened at contacts.

• Metal defects: No voiding, notching, or neckdown was noted in the metal layer.

¹These items present possible quality or reliability concerns. They should be discussed with the manufacturer to determine their possible impact on the intended application.
ANALYSIS RESULTS II (continued)

- Metal step coverage: Aluminum thinned up to 60 percent at contact edges. Total metal thinning was reduced to 40 percent with the addition of the cap and barrier. MIL-STD allows up to 70 percent metal thinning for contacts of this size.

- Pre-metal dielectric: A layer of CVD glass (probably BPSG) over various densified oxides was used under the metal. Reflow appeared to be performed following contact cuts. No problems were found.

- Contact defects: None. Contact cuts were well rounded. No over-etching of the contacts was noted.

- Polysilicon: A single layer of polycide (poly and tungsten silicide) was used to form all the gates on the die and in the cell. The poly formed the word/select lines, capacitors, and the tunnel oxide device.

- Diffusions: Standard implanted N+ and P+ diffusions formed the sources/drains of the MOS transistors. An LDD process was used with oxide sidewall spacers left in place. Diffusions were not silicided. No problems were noted.

- Isolation: Local oxide (LOCOS) isolation was used. No step was present in the oxide at the well boundary.

- EEPROM array: Memory cell consisted of a standard EEPROM design. Metal was used to form the bit lines. Poly was used to form the word/select lines, capacitors, and the tunnel oxide device. Cell pitch was 7.8 x 15.0 microns.

- Redundancy fuses were not present on the die.
PROCEDURE

The devices were subjected to the following analysis procedures:

- External inspection
- X-ray
- Decapsulation
- Internal optical inspection
- SEM of passivation
- Passivation integrity test
- Wirepull test
- Passivation removal
- SEM inspection of metal
- Metal removal and inspect barrier
- Delayer to silicon and inspect poly/die surface
- Die sectioning (90° for SEM)*
- Die material analysis (EDX)
- Measure horizontal dimensions
- Measure vertical dimensions

*Delineation of cross-sections is by silicon etch unless otherwise indicated.
OVERALL QUALITY EVALUATION: Overall Rating: Normal/Good

DETAIL OF EVALUATION

Package integrity N
Package markings N
Die placement N
Wirebond placement N
Wire spacing N
Wirebond quality N
Die attach quality N
Die attach method Silver epoxy
Dicing method Sawn (full depth)
Wirebond method Thermosonic ball bonds using 1.2 mil gold wire.

Die surface integrity:
 Toolmarks (absence) G
 Particles (absence) G
 Contamination (absence) G
 Process defects (absence) G
General workmanship G
Passivation integrity G
Metal definition N
Metal integrity N
Contact coverage G
Contact registration G

G = Good, P = Poor, N = Normal, NP = Normal/Poor
PACKAGE MARKINGS (TOP)

(LOGO) M28C64-121
4H8AA627F
KOREA

BOTTOM

XOP641FA
M6119621

WIREBOND STRENGTH

Wire material: 1.2 mil O.D. gold
Die pad material: Aluminum

Sample # 1

of wires pulled: 9
Bond lifts: 0
Force to break - high: 15g
- low 14g
- avg. 14.5g
- std. dev.: 0.5

DIE MATERIAL ANALYSIS (EDX)

Overlay passivation: A layer of nitride over a layer of silicon-dioxide.

Metallization: Aluminum (Al) with a titanium-nitride (TiN) cap and barrier. There appeared to be a layer of titanium-aluminum (TiAl) precipitate or titanium (Ti) above the barrier. A thin layer of titanium (Ti) was used under the barrier.

Poly: Tungsten (W) silicide.
HORIZONTAL DIMENSIONS

- **Die size:** 3.2 x 6.7 mm (125 x 265 mils)
- **Die area:** 21.5 mm² (33,125 mils²)
- **Min pad size:** 0.11 x 0.11 mm (4.5 x 4.5 mils)
- **Min pad window:** 0.09 x 0.09 mm (3.8 x 3.8 mils)
- **Min pad space:** 3.0 mils
- **Min metal width:** 1.0 micron
- **Min metal space:** 1.4 micron
- **Min metal pitch:** 2.4 microns
- **Min contact:** 0.8 micron
- **Min polycide width:** 1.2 micron
- **Min polycide space:** 1.1 micron
- **Min gate length - (N-channel):** 1.2 micron
 - (P-channel): 1.3 micron
- **Cell pitch:** 7.8 x 15.0 microns
- **Cell size:** 117.0 microns

VERTICAL DIMENSIONS

- **Die thickness:** 0.5 mm (20 mils)

Layers:

- **Passivation 2:** 0.65 micron
- **Passivation 1:** 0.35 micron
- **Metal - cap:** 0.07 micron (approximate)
 - aluminum: 0.65 micron
 - barrier: 0.15 micron
- **Pre-metal dielectric:** 0.65 micron (average)
- **Oxide on poly:** 0.15 micron
- **Poly - silicide:** 0.15 micron
 - poly: 0.15 micron
- **Local oxide:** 0.55 micron
- **N+ S/D:** 0.25 micron
- **P + S/D:** 0.4 micron
- **N-well:** 4.0 microns (approximate)

Physical gate length
INDEX TO FIGURES

PACKAGE ASSEMBLY

Figures 1 - 5

DIE LAYOUT AND IDENTIFICATION

Figures 6 - 8

PHYSICAL DIE STRUCTURES

Figures 9 - 26

COLOR PROCESS DRAWING

Figure 20

MEMORY CELL

Figures 21 - 25

CIRCUIT LAYOUT AND I/O STRUCTURE

Figure 26
Figure 1. Package photographs and pinout of the SGS-Thomson M28C64-121 EEPROM. Mag. 2.5x.
Figure 2. X-ray views of the package. Mag. 2.5x.
Figure 3. Perspective SEM views of dicing and edge seal. 60°.
Figure 4. SEM section views of the edge seal.

Mag. 1600x

Mag. 6500x
Figure 5. SEM views of typical ball bonds.
Figure 6. Whole die photograph of the M28C64-121 EEPROM. Mag. 34x.
Mag. 320x

Mag. 400x

Figure 7. Optical views of markings on the die surface.
Figure 8. Optical views of the die corners. Mag. 160x.
Figure 9. SEM section views of general circuitry. Mag. 13,000x.
Figure 10. Perspective SEM views illustrating overlay passivation coverage. 60°.
Figure 11. SEM section views of metal line profiles.
Figure 12. Topological SEM views illustrating metal patterning. 0°.
Figure 13. SEM views illustrating metal step coverage and barrier coverage. 60°.
Figure 14. SEM section views of metal contacts (silicon etch). Mag. 26,000x.
Figure 15. Topological SEM views of poly patterning. 0°.
Figure 16. Perspective SEM views of poly coverage. 60°.
Figure 17. SEM section views of typical transistors.
Figure 18. SEM section view of a typical local oxide birdsbeak. Mag. 40,000x.

Figure 19. Optical section view illustrating the well structure. Mag. 800x.
Orange = Nitride, Blue = Metal, Yellow = Oxide, Green = Poly,
Red = Diffusion, and Gray = Substrate

Figure 20. Color cross section drawing illustrating device structure.
Figure 21. Perspective SEM views of the EEPROM cell array. Mag. 3200x, 60°.
Figure 22. Topological SEM views and schematic of the EEPROM cell. Mag. 3200x, 0°.
Figure 23. SEM section views of the EEPROM cell (parallel to bit line).
Figure 24. SEM section views of the EEPROM cell (perpendicular to bit lines).
Figure 25. SEM section views of the EEPROM cell (perpendicular to bit line).
Figure 26. Optical views of an I/O structure and general circuitry.